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ON A KELVIN PROBLEM* 

V.V. KOZLOV 

A problem of the stability of equilibrium of a systemof interacting 
particles distributed within a bounded volume of Euclidean space is 
considered. Sufficient conditions for the instability and existence of 
the motions approaching the position of equilibrium without bounds, 
containing the Kelvin theorem /l/ as a special case, are obtained. The 
results are based on the general theory of instability of equilibrium 
in a force field with a subharmonic force function. 

1. Let us consider the dynamics of a reversible system with kinetic energy T= (%&')/2 
and force function U(z). The motions are described by the Lagrange equations 

(L'vi)' - LXi' = 0. ui = d(z')/dt, L = T + (I, i < n (1.i) 

The coefficients of the metric tensor Bij and the function V are assumed to depend con- 
tinuously on the z coordinates. We assume that the point x=0 is critical for the force 
function V, and therefore Z=O will represent the equilibrium of the system (1.1). We can 
assume that u (0) = 0. The function V will be called subharmonic if AU>0 where A is a 
Laplace-Beltrami operator taken with the minus sign: 

It is clear that the condition of subharmonicity of the force function does not depend 
on the choice of the Lagrangian coordinates zi. 

Theorem 1. Let us assume that the force function V is subharmonic and its Maclaurin's 
series is different from zero. Then the equilibrium z=o will be unstable. In the analytic 
case the condition of subharmonicity is sufficient for the instability to occur. 

Proof. Let g,'j be the values of themetrictensor at the point z = 0. We expand the 
force function V in a series in terms of homogeneous forms: (Im+um+1+..., m>2. It can be 
confirmed that AU= AOU,,,$... where AO is the Laplace-Beltrami operator of the metric 

g,ij and repeated dots denote terms of order >m- 2. Since AU 90. we have .Aoum > 0. 
The coefficients of the operator A0 are independent of z, therefore the function U,,, is 
subharmonic in the sense of the classical definition /2/. 

Using the well-known inequality 
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where s is a sphere of radius r with centre at the point I = 0, S, is the surface of the unit 
sphere, we find that the form c,,, must take positive values. Therefore U,, has no maximum 
at the point z=o. We proved in /'3/ that under this condition solutions of (1.1) exist, 
which approach the point z=o without bounds as t-+m or t--CO. This in turn implies 
the instability of the equilibrium z=O. 

Corollarg 1. Let the coefficients of the metric tensor gij be analytic, and the force 
function harmonic: AlJ=O. Then any equilibrium will be unstable. 

Indeed, if the Maclaurin's series U is non-zero, the conclusionofthecorollarywillfollow 

from Theorem 1. Otherwise u z 0, since the harmonic functions are analytic. Every point 
I = $0 will be a neutral equilibrium, and all of them are, of course, unstable. 

From Corollary 1 we conclude, in particular, that the well-known Earnshaw hypothesis on 
the instability of the equilibrium of a system of free charges in a stationary electric field 

in three-dimensional space /l, 4/, holds. The hypothesis was justified earlier for the most 
important special case in which U= U,+ US+... and u**o /5/. 

2. The problem of the stability of the equilibrium of a system of mutually repelling 

material points confined within a bounded volume, was studied by Kelvin. Some of these points 
may lie on the boundary, and the exact formulation oftheproblem must be based on the theory 
of selfreleasing constraints. First we shall consider the conditions of stability of the 
system of mutually interacting points in an n-dimensional Euclidean space, where a number of 

these points is at rest. From the point of view of practical applications, the most interest- 

ing case is that if n42. Let U(j be the force function of the interacting particles with 

masses mi, and m,(i#)). The function depends only on their mutual distances. 

Theorem 2. Let us assume that the functions uij(I.) are analytic for r > 0 (i + i) and 

(2.1) 

Then any equilibrium will be unstable. 

Proof. Let .+, . ., Zi” be the Cartesian coordinates of the point of mass ni. Then 

T = ~mi (t?ik)'/2. The corresponding differential operator A will have the form 

E I 
- aa+...+ 2__, 
mi a (I 1)s ( 1 a kin)* I 

Let .7j', . . ., zln be the coordinates of another point of mass "11, and rij = [X (ZiR - *,Q)2]'/r 

be the distance between them. It is clear that the quantity 

.T @Uj, Pij) 

+ a (zjk)2 

is equal to the left-hand side of inequality (2.1). The complete force function of the system 

of interacting particles is equal to U = x Uij. Taking into account the inequalities (2.1) 
icj 

we find, that U is a subharmonic function. The instability of the equilibrium now follows 

from Theorem 1. 
We shall consider, as an example, a power law of the interaction Vi,(r) = o,)'-~. In the case 

of attraction Gf < 0, and in case or repulsion CZij > 0. From the inequality (2.1) we obtain 

OiJ Ct(fl + CZ - 2) > 0 (2.2) 

If the points attract (repel) each other, then the equilibrium is unstable when OL (n + 

a-_?)<.ll fa(ll+ a-22)>0). Then CZ=2-nn, the force function is harmonic and we again obtain 

the Earnshaw theorem. In the case of linear forces Q = 2. and hence the equilibrium of the 

particles repelling each other elastically will always be unstable (compare with /l/). 
In the special case when 2n stationary points are distributed over n straight coordinate 

lines at equal distances from the point I= 0 and the coefficients ni, are equal to each 

other, the inequality (2.2) will serve as the criterion of instability of equilibrium of the 

particle situated at the point z---O. 

Condition (2.1) becomes particularly simple when n=l. If the force function of the 

dual interaction between the particles on a straight line is concave upwards, any equilibrium 

will be unstable. In particular, any equilibrium configuration of gravitating points on a 
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straight line will be unstable. Conversely, in the case of repulsion, stable equilibrium 

configurations are possible. The simplest example of this is the equilibrium of a charge 

situated between stationary charges of the same sign. 

3. We will now consider a more complicated case, when some of the particles in the state 

of equilibrium are distributed over a closed, smooth regular hypersurface P. In the course 

of the analysis of the stability we shall assume that these particles do not depart from ?1 

during their motion (i.e. the constraints are not selfreleasing). The dynamics of such a 

system of particles is again described by the Lagrange Eqs.cl.11, but the metric T will no 

longer be plane. Let Uij again denote the force functions of dual interaction depending 

only on the distance between the interacting particles. 

If, in the state of equilibrium, not all particles lie on the surface I:, then a new 

mechanical system with fewer degrees of freedom can be considered. The system is obtained 

by fixing the positions of the particles lying on 8. Let U' be the force function of the 

new system. It is clear that the configuration of the particles in the initial system 

represents the equilibrium of the partially "frozen" system. 

Theorem 3. Let us assume that not all particles lie on L in the state of equilibrium, 

that the inequalities (2.1) hold, and U' = U,'+ V,'+ . . . . U,'$O. Then the equilibrium is 

unstable. 

Proof. Let us put U= V,+ U,+.... It is clear that the form U,' represents the form 

u, restricted to the configurational space of the frozen system. Since u,' f: 0. it follows 

according to Sect.2 that the form U,' has no maximum in the state of equilibrium. Therefore 

the quadratic form (II has the same property. The instability of the equilibrium now follows 

from the Lyapunov theorem /5/. 

If not all particles lie on E in the state of equilibrium and the inequalities (2.1) 

hold, then the force function U has no local maximum. The problem of instability however 
runs, in this case, into the unsolved problem of inverting the Lagrange-Dirichlet theorem. 

Corollary 2. (Kelvin's theorem /l/J. Assume that the system of particles repelling each 

other elastically and confined within a bounded volume V, is in equilibrium and that not all 
particles lie on the boundary a!~= Z. Then the equilibrium is unstable. 

Indeed, in this case U' =_ U,', and in the case of elastic repulsion the form I-,' is, 

according to Sect.2, a subharmonic function. 

If all interacting particles lie on the surface 2, then Theorem 1 should be used in 

determining the conditions of stability. 
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